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SOME FIXED POINT THEOREMS IN DISLOCATED
QUASI ULTRAMETRIC SPACES USING DIFFERENT CONTRACTIONS
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ABSTRACT. This paper generalizes fixed point results in non-traditional metric spaces by in-
troducing dislocated quasi-ultrametric spaces (dg-ultrametric spaces). It establishes fixed point
existence and uniqueness using specific contractions, explores implications for integral equa-
tions, and expands upon prior findings. Key results are illustrated with examples, broadening
the ultrametric framework’s applicability.
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1. INTRODUCTION

The fixed point theory is an essential part of nonlinear analysis, and it has been used to
prove that the solutions of different mathematical models exist and to prove the uniqueness of
the solution. Several authors have made significant contributions to this theory through their
writings (see [2, 10, 17, 22]). An essential theorem of fixed point theory is the Banach contraction
principle, which says that there is only one fixed point for every contraction in a complete metric
space. The concept of metric space has been extended in various ways. Some notable and impact
full generalizations of metric spaces include b-metric space, cone metric space, cone b-metric
space, dislocated metric space, quasi-metric space, dg-metric space, generalized quasi-metric
space, and so on. Mainly, topological approaches are used to obtain fixed-point semantics in
logic programs. Such considerations inspired dislocated metric spaces. The dislocated topology
implementations have been examined in the context of logic programming semantics (see [14]).
They established the concept of dislocated metric space and modified the Banach contraction
theorem in such spaces to achieve a unique supported model for these applications. Furthermore,
The concept of completely dg-metric spaces was introduced to generalize previous results [14,
24, 39]. Fixed point theorems in dg-metric spaces were developed in [1], while some fixed point
results under continuously contractive conditions with a rational type expression were established
in [15]. Further generalization of these results was presented through a fixed point theorem in
[20]. Additional results in dislocated and dq metric spaces were provided in [41]. Fixed point
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theorems for continuous self-mappings in dg-metric spaces were investigated in [37], and new
fixed point results were constructed in [28].

Aage and Salunke developed fixed point theorems in dg-metric spaces [1]. Isufati [15] also
found some fixed point results in a dg-metric space for conditions that are continuously contrac-
tive and have a rational type expression. Kohli et al. [20] investigated a fixed point theorem
that generalized Isufati’s result. Zoto presented some new results in dislocated and dg-metric
spaces in [41]. Shrivastava et al. [37] investigated a fixed point theorem in dg-metric spaces
for a continuous self-mapping. Patel and Patel [28] built some new fixed points that result in a
dg-metric space.

In mathematics, we can obtain a dislocated quasi-metric space by subtracting one and a half
restrictions from the three restrictions of a metric space. A complete dislocated quasi-metric
space is a more generalized version of a complete quasi-partial metric space and an orthogonal-
complete space, as stated in references [3, 13, 19]. Additionally, a dislocated quasi-metric space
also encompasses the concepts of dislocated metric and partial metric. References [8, 36, 40]
contain the fixed point results established by several researchers in dislocated quasi-metric space.

The field of non-Archimedean functional analysis was initiated by Monna, who published a
series of papers in 1943. A significant development occurred in 1978 with the publication of
book [38], which remains the most comprehensive resource on non-Archimedean Banach spaces
in the literature. For a metric space (X, d) to be ultrametric (non-Archimedean), it must satisfy
the stronger triangle inequality, i.e., d(x,y) < max{d(z, z),d(y, 2)}, for all z,y,z € X. Note
that any ultrametric space is also a metric space, but the converse is not necessarily true. The
concept of ultrametric spaces has practical applications, such as in taxonomy and phylogenetic
tree construction.The notion of ultrametric spaces was introduced in [38], while a fixed point
theorem for a class of generalized contractive mappings in an ultrametric space was proved in
[12]. Furthermore, two coincidence point theorems for three and four self-maps in a spheri-
cally complete ultrametric space were introduced in [33]. Fixed point results on ultrametric
spaces have also been established in and related studies on fixed point theorems can be found in
[23, 29]. In 2016, fixed-point results for dislocated quasi ultrametric spaces were reported in [6].
These spaces have unique characteristics that differ from those of other metric spaces or gen-
eral modular spaces. The spaces exhibiting ultrametric inequality possess unique geometric and
topological features that can result in different outcomes compared to standard metric spaces.
Theorems established for ultrametric spaces are tailored to their exceptional properties. In 2017,
fixed point theorems in partially ordered ultrametric and non-Archimedean normed spaces were
established in [21], focusing on single-valued and strongly contracted mappings. Additionally,
mappings in ultrametric spaces involving contractions and set-valued contractions were analyzed
in [32]. Recent studies in [30] employed p-adic distance to derive novel fixed-point theorems on
partially ordered ultrametric spaces. Furthermore, common fixed point results in dislocated
quasi-ultrametric spaces were obtained in [7] by utilizing different contractions and demonstrat-
ing their applications. Moreover, new coincidence point theorems were introduced in partially
ordered ultrametric spaces using extended rational contractions in [31]. These advancements
underline the growing importance of ultrametric spaces in modern mathematical analysis. As
the field continues to evolve, further exploration of these concepts could yield additional insights
into both fixed point theory and its applications across various scientific domains (see [4, 5, 11,
18, 25-27, 34, 35]).

An ultrametric spaces are a specific type of metric space that has a unique property known
as ultrametric inequality. This property distinguishes them from regular metric spaces. In an
ultrametric space, the distance between two points is always less than or equal to the maximum
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of their distances from a third point. This is different from the traditional triangle inequality
in regular metric spaces. The study of fixed points in ultrametric spaces can lead to many
intriguing and unexpected results. The Banach Fixed Point Theorem for ultrametric spaces is
one of the most well-known theorems in this area. It states that if a contraction mapping is
applied to a complete ultrametric space, it will have a single, unique fixed point. A contraction
mapping is a function that decreases the distances between points, while completeness ensures
that the space contains all its limit points.

Definition 1.1. [9] Consider a fized prime number p. Also, let ¢ € R, where 0 < ¢ < 1 and
c will be fized throughout the discussion. If s is any rational number other than zero, we can
write s in the form
w=p'",
v
where 6 € Z, and u,v € Z, and p{ a,ptb, and clearly, > § may be positive, negative or zero, we
now define

||, = ¢ and 0], = 0.
It follows immediately from the definition that, ||, > 0 if and only if s = 0.

Example 1.1. [9] Take » = . Suppose if we want to find its 2-adic absolute value (where

p=2), first, we write s in the following form
19 19
— — 973 « %
Tk o
which implies that |»|o = 23 = 8. Then, what about its 19-adic absolute value? It will simply
be |»|19 = 1—19 because

—19% = thus |sclig = —
= 216 NS 19T g

Also, it is trivial that the p-adic absolute value of a rational number when p divides neither the
numerator nor the denominator is 1, since p° = 1.

1.1. Motivation of this study.

Definition 1.2. [16] Let (X, d) be a metric space and T : X — X be a self-mapping. Then T
1s called a Kannan mapping if

d(Tz, Ty) < ad(z,Tz) + d(y, Ty),
for all z,y € X and a € [0,1).

Theorem 1.1. [16] Kannan established a unique fized point theorem for a mapping that satisfies
the above condition in metric spaces.

Besides that, we came up with the following fixed point theorems by using a generalized con-
traction and a Kannan-type contraction in the context of quasi-metric spaces that are dislocated

1].

Theorem 1.2. [1] Let (X,d) be a complete dg-metric space and T : X — X be a continuous
self-mapping satisfying the following condition:

d(Tz,Ty) < a-d(x,Tz) + d(y,Ty),
for allr,y € X, where a > 0 with a < 1. Then T has a unique fixed point.
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1.2. Structure of this study.

This research article is divided into four sections. In Section 1, we present an introduction
that provides the foundational background necessary for proving the primary results of our in-
vestigation. Section 2 focuses on the main results. In Section 3, we demonstrate the applications
of our results to integral equations. Finally, in Section 4, we conclude our work with a summary
of findings and potential directions for future research.

The aim of this paper is to investigate the existence and uniqueness of fixed points in dg-
ultrametric spaces. Utilizing various contraction principles, we derive several corollaries for fixed
points of self-mappings that satisfy more generalized contractive conditions in such spaces. To
support our findings, we provide illustrative examples. Additionally, we explore the application
of integral equations in the context of fixed points.

2. MAIN RESULTS

Definition 2.1. Consider a non-empty set Y and a functiond : Y xY — [0, +00) that satisfies
the following conditions:

(dy) d(5¢,5) =0;

(d2) d(5¢,7v) =d(v,5) =0, only if ¢ =;

(ds) d(s,7v) =d(v, ), for all x,y€Y;

(ds) d(5,¢) <max (d(5,7),d(v,c)) for all s,vy,c€Y.
If d satisfies all the four conditions, it is called an ultrametric on Y. If d satisfies conditions
(d2) to (dy), it is called a dislocated ultrametric space on Y. Finally, if d satisfies conditions
(d2) and (d4) only, then it is called a dq-ultrametric on'Y.

It is important to note that every metric on Y is a dislocated metric on Y. However, the
converse is not necessarily true, as demonstrated by the following example:
Example 2.1. Let Y = [0,1], we define the function d,, : Y x Y — R* as

dy(3¢,7) = max { |3 — 7/, || }.

Then d,, is a dislocated ultrametric but d, is not a metric.
Example 2.2. Let Y = R and let d,(5,7) = | — v| + % + %', where m,n € N with n # m.
Then (Y, d,) is a dislocated quasi ultrametric space.

el

Let s,7,c € Y, suppose that d,(sr,7) = 0. Then |3 — | + I—fL' + 2l =o.
It implies that |»r —v| = 0, and so » = . Next, consider
x i
du(6,7) = e — o) + 24 4 1
n o m
P
< \%—c—l—c—’y\—i-u—i-m
nom
P c e
< masx [Jse — cl, Jo — o] + 2 4 DL 1Al
nm m n

Thus

dy (3¢, ¢) < max (du(32,7), du(7, ).

Definition 2.2. A sequence {5¢,} in a dq-ultrametric space is called a Cauchy sequence if for
€ > 0 there exists a positive integer N such that for n > N, we have dy (s, #n41) < €.
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Definition 2.3. A sequence {s¢,} is called dq-convergent in'Y if forn > N, we have d, (3¢, ») <
€, where » is called the dq-limit of the sequence {s,}.

Definition 2.4. A dq- ultrametric space (Y, dy) is said to be complete if every Cauchy sequence
m Y converges to a point Y.

2.1. Fixed point theorems related to existence and uniqueness in dislocated quasi-
ultrametric space.

Theorem 2.1. Let (Y, d,) be a complete dq-ultrametric space, and let T : Y — 'Y be a contin-
uwous self mapping satisfying the following contraction

du(Toe, Ty) < 0du(3¢,7) + Bdu(y, T) + vdu(5¢, T7) (1)
where 0,3,y € [0,1) with § + 26 +~v < 1. Then T has a unique fized point.

Proof. Let 3¢ be chosen arbitrarily. Then we define a sequence {s,} by the rule s =
Ty, 290 = T, - sepy1 = T3¢, forallneN.

Now we show that sz, is a Cauchy sequence in Y. Suppose
du(%na %n—i-l) = du(—l—%n—ly T%n)
< 5du(%n71a %n) + Bdu(%na T%nfl) + ’Vdu(%nfla T%n)
< 5du(%nfla %n) + Bdu(%m %n) + ')’du(%nfla J{nJrl)

< 5du(%n71a %n) + Bdu(%na %n) + 7y max {du(%nla %n)a du(%ru %nJrl)}-

Case 1: If max {du(%n_l, 7)), dy (70, %n+1)} = dy(sn—1, 7,) then we get

6 %n 15%71) +6d (%nfla%n) +ﬁdu(%na%n+1) +’7du(%n71a%n)
<5 + 6+ v> (120
k d

J{n la%n)

du(%na %nJrl

IN

IA

where k = 54{5% < 1. Thus we have

dy(stn, stn11) < K" dy(500,71) foralln e N.
Case 2: If max {du(%nl, ), dy (7, %n+1)} = dy (5, #n+1), then we get

du(%na %n+1) < 6du(%n71a %n)‘}‘ﬁdu(%nfla %n)+ﬁdu(%n’ %nJrl)"_’Ydu(xna xn+1+bdu(%na %nJrl)(l_’Y)du(%na An+1

o+p
<7du n—unghdu n—1,n/,
_(1—5—’}’) (sen—1, 2n) (sen—1, #n)
where h = 1EJ/§€7 < 1. So we have
dy(5en, #n11) < h™ dy(509,50) forallneN.
Since k,h < 1, we have lim k" = lim h" = 0 in both cases, which shows that {5} is a

n—-+00 n—-+00
Cauchy sequence in complete dg-ultrametric space (Y, d,,).

Since T is continuous, there is a point s € Y such that

lim sz, = 2.
n—4o0o
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Then

Tx=T lim s,
n—-+00

= lim Tz,
n—-+00

= I
i,
= .
Uniqueness part: Suppose that s and ~ are two different fixed points of T. Then
Tx=s and Ty =n1.

We assert that dy (s, 22) = dy(v,7v) = 0. If dy(52,¢) > 0 and dy(7,7) > 0, then we derive from
(1) that

dy (52, 5¢) = dy (T2, Ti)
< 0dy (52, 22) + By (52, T 5¢) + ydy (2, T )

du(52,¢) < (6 + B+ 7)du(5, %)
and
du(7,7) < (04 B +7)du(v,7)

respectively, which is a contradiction to 0 < d + 5 + 2v < 1.
Assume now that d,(3¢,77) > 0 and d,(y, ») > 0 . Then we get the following

du(56,7) < (6 + 7)du(,7) + Bdu(y, ) (2)
and similarly
du (7, %) < Bdu(36,7) + (0 +7)du(7, ). 3)
Combining (2) and (3), we get
|du(56,7) = du(y, )| < (6 = B+ )ldu(36,7) = du(y, )|

which implies that, d,(s,v) = dyu(7, »). Since 0 < § — f+ v < 1, it follows from (1) that

du(52,7) < 8dy(s2,77) + Bdu(y, Ts) + ydy (2, T)
< 8dy(52,7) + Bdu (7, %) + ydy(5,7)
<

(0 + B+ 7)du(>,7),

which gives dy(s,7) = 0, since 0 < (§ + S+ v) < 1. Further d,(s,v) = dy(7, ) = 0. This fact
yields s = . Hence the proof is complete. O

Example 2.3. Let (Y,d,) be a complete dislocated quasi-ultrametric space with Y = [0, 1],
where dy,(s¢,7) = |2 — 7v|p + 3|5|p + 2|7|p, for all s,y € Y. Define the continuous self-mapping
T onY by T = =* satisfying Theorem 2.1. Then T has a unique fixed point.
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Now, we consider

du(Toe, TY) = [ Toe = Tl + 3= | + 21y
< 8(122 =y + 32y +21l) + B+ Zlo 30l 207 )
+ ([ + %’p + 3[5elp + 2’%’;))
< 6(152 = vy + 3l + 21lp) + By = Tody + 3yl + 2| Toely)

+(l5e = Tlp + 3|l + 2| T[p)

Then the contraction condition in Theorem 2.1 holds by selecting proper values of 4, 3, in [0, 1)
and p such that 0 < + 8+ v < 1. Therefore T has a unique fixed point.

Theorem 2.2. Let (Y,d,) be a complete dq-ultrametric space and T : Y — Y be a continuous
self mapping satisfying the following contraction

du(T e, Ty) < 0du(32,7) + Bdu(5¢, Toe) + ydu(y, Ty) + eldu(se, TY) +du(y, T3)]  (4)
where 8, 5,v,e € [0,1) with 6 + + v+ 2e < 1. Then T has a unique fized point.

Proof. Let s be chosen arbitrarily. Then we define a sequence {3} by the rule s, s =
Ty, 29 = Ty, - spy1 = 3¢, forallnelN.
Now we show that sz, is a Cauchy sequence in Y. Suppose that

dy (50, stn41) = du(T 2201, T 32).
Then

dy (5, #n11)

< 0dy(3en—1, 30n) + Bdu(en—1, T 2tn—1) + Ydu(5en, T 22n) + e[du(5tn-1, Ten) + du(5en, T 5n-1)]
< 0dy (sn—1, 7)) + Bdu(5en—1, 7n) + Ydu (300, 30n11) + e[du(3en—1, #n+1) + du (560, 30,)]

< ddu(sn—1, 20n) + Bdu(3en-1, 50) + Ydu (3, 3n+1)

+e max{du(%n—ly %n)u du(%na %n—i—l)} + e[du(%n—h %n) + du(%nv %n+1)]~

Case 3: If max {du(%n_l, ), dy (70, %n+1)} = dy(sn—1, ), then we get

du(%nv %n+1) < (5du(%n—17 %n) + 5du(%n—17 %n) + ’Ydu(%nv %n—‘rl) + 26du<%n—17 %n) + edu(”n: %n—‘rl)
< <5+B+2€>du(%n_1, )
l—v—e
< kl du(%n—ly %n),

0+p+2e

Tore < 1, and so

where k; =

du(%na %n+1) < k? du(%Oa %1)-
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Case 4: If max {du(%n_l, ), Ay (50, %n+1)} = dy (5, #n+1), then we get

du(%nv %n+1) < 5du(%n—17 %n) + ﬁdu(%n—la %n) + 'Vdu(%nv %n—‘rl) + edu(%n—la %n) + 2€du(%n7 %n—‘rl)

< (%) du(3n-1, )
< hy du(5n-1,30),
where hy = % < 1, and so
dy(5en, #n11) < Y dy (50, 50).
Since ki,h; < 1, we have nll)l_il_loo ki = nEI-lI—loo h}? = 0 in both cases, which shows that {s,} is a

Cauchy sequence in the complete dg-ultrametric space (Y, d,).
By virtue of the fact that T is continuous, there exists a point s € Y such that

lim sz, = 2.
n—4o0o

Then

Tx=T lim »,
n—-+o0o

= lim Tz,
n—-+o0o

— 1
Rl
= .
Uniqueness part: Suppose that s and ~ are two different fixed points of T. Then
Tx=s and Ty =n1.

We assert that dy (s, 32) = dy(7,v) = 0. If dy(5,3¢) > 0 and d,(7,7) > 0, then we derive from
(4) that

dy (52, 3¢) = dy (T 22, T 32)
< 0dy (52, 3¢) + By (32, Tae) + ydy (32, T 3¢) + e[dy (52, T 32) + dy (3¢, T 32)]
dU(%a %) < (5 +B8+v+ 2€)du(%, %)
and similarly
du(7,7) < (04 B+ +2e)du(v,7)

respectively, which is a contradiction to 0 < 6 4+ 5+ 8 + 2e < 1. Assume now that d,(s,7y) > 0
and dy (v, ) > 0 . Then we get the following

du(56,7) < (6 + €)du(3¢,7) + edu (7, ).
Similarly,
du (7, %) < edu(56,7) + (6 + €)du(y, ),
|du(5¢,7) = du(7, 2)| < [0]|du(34,7) = du(7, 59)],
which implies that, d,(s¢,7) = dyu(7, ), since 0 < 6 < 1. It follows from from (4) that
du(52,7) < (0 + 2€)du(>,7),

which gives d,(s,7) = 0, since 0 < §+2e < 1. Further d,,(sr,7) = dy (7, 2) = 0. This fact yields
2 = ~v. Hence the proof is complete. U
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Theorem 2.3. Let (Y,dy,) be a complete dq-ultrametric space and T : Y — Y be a continuous
self map satisfying the following contraction

dy (T2, Ty) < 8dy(32,77) + By (32, Tae) + vdu(y, T2) + e[du(32, Tae) + du(y, T7)] (5)

+ fldu(>,T7) + du(y, T5)],

where 0,3,7v,e, f €[0,1) with 6 + 5+~ +2e+2f < 1. Then T has a unique fized point.
Proof. Let s be chosen arbitrarily. Then we define a sequence {3} by the rule s, s =

Ty, 0= T, - stpy1 = | 3¢,, forallneN.
Now we show that {sz,} is a Cauchy sequence in Y. Suppose that

dy(5n, #n41) = dy (T 221, Tzp).
Then

dy (5, #n+1)
< Ody (3tn—1, 20n) + Bdu(3en—1, Tstn—1) + Bdy (520, Trep—1)

+ e[dy(sen—1, Trtn-1) + du(5en, T3en)| + fldu(sen—1, T 3n) + du(5en, T 36—1)]
< 0dy(stn—1, 5) + Bdu(3en-1, 3n) + V[du (501, 20) + du (56, 541)]

+ e[du (31, ) + du (3, 30m41)] + fldu(3em-1, 541) + du(56,, 56,)]
< 0dy (51, 5) + Bdu(3en-1, 30) + V[du(5en-1, 20) + du(56, 5041)]

6[ u(%n—ly %n) + du(%na %n—i-l)]

+ f[max {du(%n—ly %n)a du(%na %n+1)} + du(%n—la %n) + du(%nv %n—ﬁ-l)]‘

Case 5: If max {du(%n—1, ), Ay (7, %n+1)} = dy(3¢n—1, 7n), then we get

du(%na %n+1) < 6du(%n—la %n) + Bdu(%fn—la %n) + 'Y[du(%n—ly %n) + du(%na %n—l—l)]
+ e[du(%n—lv %n) + du(%na %n-‘,-l)] + Zfdu(%n—la %n) + edu(%’m %n—i—l)
0+ 8+ y+e+ 2f
< — n
_< 1—7—€—f du(%n 17%)
< k2 du(%n—la %n)a

where ko = == T

du(%n,%nH) < ki dy(s,) for all n€N.
Case 6: If max {du(%n—1, ), Ay (50, %n+1)} = dy(5n, #n+1), then we get

du(%nv %n+1) < 5du(%n—17 %n) + Bdu(%fn—lu %n) + 'Y[du(%n—ly %n) + du(%na %n—l—l)]
+ e[du(%n—lv %n) + du(%na %n-‘,-l)] + fdu(%n—ly %n) + 2fdu(%na %n—i—l)

e L ) Lo

< h2 du(%n—la %n)v

IN

where hy % < 1, and so

dy(5n, #n41) < hy dy(5,s0) for all n e N.
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Since kg,ha < 1, we have lim kJ = lim h5 = 0 in both cases, which shows that {ss,} is a
n—-+00 n—-+00

Cauchy.
By virtue of the fact that T is continuous, there exists a point s» € Y such that

lim sz, = 2.
n—-+o0o

Then

Tx=T lim 2,
n—+oo

= lim T,
n——+0oo

= lim s
n—+400 ntl

= .
Uniqueness part: Suppose that s and ~ are two different fixed points of T. Then
Tx=2sx and Ty =n1.

We assert that dy (s, ) = dy(v,7v) = 0. If dy(32,¢) > 0 and dy(v,7) > 0, then we derive from
(5) that
dy (s, 3¢) = dy (T ¢, T )
< 0dy (52, 32) 4 0dy (52, To2) 4+ ydy (3¢, To2) + €[dy (32, Toe) + dy (52, T )]
+ fldu(5e, Tae) + dy (52, T )]

< (04 B+ +2e+2f)dy (s, x)
and similarly
du(7,7) S (0 +B+v+2e+2f)du(v,7),

respectively, which is a contradiction to 0 < d§ + 8+ v+ 2¢ + 2f < 1. Assume now that
dy(s2,7v) > 0 and d, (v, 2) > 0 . Then we get the following

du(56,7) < (6 + f)du(36,7) + (v + f)du(7, %)
and similarly

du(7y, %) < (v + fdu(5¢,7) + (B + fdu(y, »).
Thus

|du(32,7) — du(7y, )| <10 —y||du(32,7) — du(, #)],

which gives d,(s,7) = 0, since 0 < §+2e < 1. Further d,,(sr,7) = dy (7, ) = 0. This fact yields
» = . The proof is complete. O

Example 2.4. Let Y = [0,1] with a complete dislocated quasi ultrametric space defined by
dy(s,7v) = |3|p for all 2,7 € Y, and define the continuous self mapping T defined by T = 8¢
satisfying Theorem 2.3. Then T has a unique fixed point.

Proof. Assume that 6, 3,7, e, f lie between 0 and 1, with 6 + 8+~ + 2e + 2f < 1. Suppose that

5:%,6:%,7:%ande:%o,f:%. Let%and’ybeﬁxedsuchthat%:%and’y:%.

Using the inequality (5) we obtain the following results
(1) du(Tse, Ty) = |4lp,
(2) du(%77) = du(%a TPY) = dy
(3) du(, T) = du(y, Ty) = |

gz, Tx) = \%]p,
3lp-
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When p = 2,

<25+28+v+3e+3f

e

and hence clearly T satisfies the inequality (5) and s = 0 is the unique fixed point of T € Y. O

Corollary 2.1. Let (Y, d,) be a complete dq-ultrametric space and T : Y — Y be a continuous
self mapping satisfying the following contraction conditions: For all §,5,v,e,f € Y.

(1) du(Ts, Ty)
< 0dy(52,7) + vdu(y, To) + eldu(3e, T3¢) + du(y, TY)] + fldu(e, Ty) + du(y, T2)],

where 0,7y,e, f € [0,1) with 6 +v+2e+2f < 1;

(2) du(T3e, Ty) < 0du(3e,7) + vdu(, Toe) + fldu(se, TY) + du(y, T2)],
where §,v, f € [0,1) with § +~v+2f < 1;

(3) du(T3e, Ty) < 0du(5e,7) + eldu(3e, T3e) + du(y, TY)] + fldu(se, TY) 4 duly, T)],
where d,e, f € [0,1) with 6 +2e+2f < 1;

(4) du(Tse, Ty) < ydu(y, T3) + eldu(e, Toe) + du(v, TY)] + fldu(3e, TY) + du(y, T2)],
where 7y, e, f € [0,1) with v+ 2e +2f < 1.

Then T has a unique fixed point.

Corollary 2.2. Let (Y, d,) be a complete dq-ultrametric space and T : Y — Y be a continuous
self mapping satisfying the following contraction conditions: For all §,5,v,e,f € Y.

(1) du(T2, T)
< Bdu(3e, Tre) + vdu(y, To) + eldu(5e, T3¢) + du(y, TY)] 4 fldu(e, Ty) + duly, To)],
where B,v,e, f €10,1) with 8+~ +2e+2f < 1;
(2) du(Tse, Ty) < Bdu(5, Toe) +ydu(y, T3e) + fldu(s, T) + duly, T3)],
where
beta,vy, f € [0,1) with B+~ +2f < 1;
(3) du(Tse, Ty) < Bdu(5e, Toe) 4 €[du(se, Tr) + duly, TY)] + fldu(se, T7) + du(y, T5)],
where B,e, f € [0,1) with B+ 2e+2f < 1;
(4) du(Tse, Ty) < 6du(2,7) + Bdu(e, Toe) + fldu(se, Ty) + duly, To)],
where 6,5, f € [0,1) with § + 5+ 2f < 1.

Then T has a unique fixed point.

2.2. Fixed-point results are obtained in dislocated quasi-ultrametric spaces using

rational contractions.

Theorem 2.4. Let (Y,d,) be a complete dq-ultrametric space, and let T : Y — Y be a contin-
wous self mapping such that for all ¢,y €Y, 0<9,6<1, and 30 + 5 <1,

du, T+ du (o, T)]

du(Ts6, T7) < 8ldu(e, T7) + duly, Too)l 4+ 5= 20

Then there exists »c € Y such that T = .
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Proof. Suppose s € Y and {s,} is a sequence in Y such that Tz, = 5,41. Then

dy (5, #n41)
=dy(Tsn_1, Tst,)
dy(5en, Toen) |1 + dy(5en—1, Tren—1)]
1+ dy(5en—1, 2)

dy (50, 3tn41)[1 + dy (321, 5)]

1+ dy(52n—1, 20n)
< O[dy(5tn—1, 3en+1) + du(5tn, 300)| + Bdy (520, 36n41)
< dmax|dy (361, 2n), Ay (500, 26n41)] + 0[du (30, s6n—1) + du(30n—1, 300)] + By (520, 7n+41).

< 5[du(%n—la T%n) + du(%nv T%n—l)] + B

< 5[du(%n—1a %n+1) + du(%nv %n)] + B

Case 7: If max {du(%nl, ), dy (7, %n+1)} = dy(sn—1, ), then we get

du(%m %n+1) < ddy (%n 1, %n) + 5[d (%m %n—l) + du(%n—h %n)] + ﬁdu(%nv %n+1)7
(1_5_5)du(%na%n+1 Sz %n 17%n)

<1— 5+5> w21, %)

where kg = %‘;B) < 1, and so

IN

dy (50, stn41) < ki dy(50,221) for all neN.

Case 8: If max {du(%nl, ), Ay (7, %n+1)} = dy(sn, #n+1), then we get

<
(1 =28 = B)du(stn, n11) <

<1z (2(;+B)>du(%n 1, %n)
where hg = % < 1, and so
dy(stn, stn11) < hi dy(50, 1) for all neN.
Since k3, hg < 1, we have lim k%j = lim h% = 0 in both cases, which shows that {s,} is a

n—-+o0o n—-+o0o
Cauchy sequence in the complete dg-ultrametric space (Y, d,,).

By virtue of the fact that T is continuous, there exists a point s € Y such that

lim sz, = 3.
n—-+4o0o

Then
Tx=T lim »,
n—-+o0o

= lim Tz,
n—-+o0o

= i
n-roo 1
= .
Uniqueness part: Suppose that s and « are two different fixed points of T. Then

Tx=s and Ty =nr.
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We assert that d,, (s, 32) = dy(y,7) = 0. If dy(52, 2) > 0 and dy(7,7) > 0, then we derive from
(5) that

dy (s, 32) = dy (T, T )
dy (52, Toe)[1 + dy (52, T )]

< O[dy(5e, Toe) +dy(5¢, Toe)| + B 1+ dy (5, )

< (26 + B)du (5, )
and similarly
du(7,7) < (26 + B)du(7,7),
respectively, which is a contradiction to 28 + 8 < 1. Hence dy (s, ) = 0, similarly we get
dy(7,7v) = 0. Assume that d,(s,7) > 0 and dy (7, 2>) > 0 . Then we get the following
du(3,7) = du(T5, T7)
(7, TV + du (52, T5)]
1+ dy(5,7)

(Vs M + du(5¢, 5)]
1+ dy(52,7)

< 81du (o2, T) + du(y, To0) + B2

< 8[du(567) + du(y, )] + B2

and similarly

< O[du(y, Ta) + du(se, TH)] + BdU(%v Too)[1+ du(y, T7)]

1+ dy(y, )
du (52, 70)[1 + du(7,7)]
< .
> 6[du(77 %) + du(%a 7)] + B 1 + du(% %)
Thus
|du(56,7) = du(y, )| =0 = du(3¢,7) = du(7, 5). (6)
So we get dy(32,7) = dy(y, %) = 0. This fact yields s = . O

Theorem 2.5. Let (Y,d,) be a complete dq-ultrametric space and T : Y — Y be a continuous
self mapping such that for all e,y €Y, 0<§,8<1, and 6+38+~v<1,

du(Ts, T)

< 8ldu (32, T32) + dul(y, TA)] + Bldu(os T) + duly, To9)] + 22 Tl’Yl[Z:( ff“,(; Ts)].

Then there exists »c € Y such that T = ».

3. APPLICATIONS

3.1. Applications to integral equations.

The application of fixed point theory in dislocated quasi-ultrametric spaces provides a ro-
bust framework for solving integral equations. Integral equations, which are equations where
an unknown function appears under an integral sign, arise in various mathematical and applied
science fields, such as physics, engineering, and biology. By leveraging the properties of dis-
located quasi-ultrametric spaces, one can establish conditions under which solutions to these
equations exist and are unique. A dislocated quasi-ultrametric space generalizes the concept of
metric spaces by relaxing certain axioms. Specifically, the triangle inequality is replaced with a
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stronger ultrametric condition, and the self-distance of a point need not be zero. This flexibil-
ity makes dislocated quasi-ultrametric spaces particularly suitable for studying problems with
non-standard or irregular structures, such as those encountered in integral equations.

Theorem 3.1. Let (Y,dy,) be a complete dq ultrametric space and T : Y — Y be a continuous
self-mapping. Assume that T satisfies the following contraction condition:

dy (T2, Ty) < 8dy(56,7) + B dulse, Ts) +ydu(y, Trx)
+ e[du(5e, Tae) + du(y, TY)] + fdu(3e, Ty) + dulv, T3)],

for all 2,y € Y, where the constants d, 3,7, e, f € [0,1) satisfy the inequality
0+B+~v+2e+2f<1.
Then T has a unique fized point in (Y,d,).

Let W = C([0,1],RT) be the family of continuous functions defined on [0, 1]. Consider the
following integral equation
o) = [ HCe. )t @
for all e € [0,1], where H : [0,1] x W — R. For » € C([0,1],R"), define supremum norm as
[[22]| = sup,epo,11{]7(s)|e*} and for all 5,y € C([0,1], R"), define

du(re7) = 5 sup {I(s) +7(5)le")
s€[0,1]
1
= S+l
It is clear that C([0,1],R™,d) is a complete dislocated quasi ultrametric space. So we have the
following result.

Theorem 3.2. Suppose that
(i) H:[0,1] xW — R;

(ii) Define
(To(e) = [ Hle. ).
such that
M (5,7)
’H(em]ta%(f)) +H(€7f7’7(f))| S W

for all e, f €10,1] and 3,7 € C([0,1],R™), where
M (5,7) = (5 ¢ + A1l + B llse + Toell 4+ [l + Toell + e(llse + Tl + Iy + Tl

T Fle+ Tl + Iy + wr)).

Then (7) posses a unique solution.



228

TWMS J. PURE APPL. MATH., V.16, N.2, 2025

Proof. By (ii), we have

Toet To| = /0 (e fo o)) + Hie for(£)] df
¢ M(%77) ef
< /0 M) orgp

This implies

M (52,7) +1
e
S]W(%,fy)/ efdf
M(%57)+1 0
M (52,7) o
T M(5e,y) +1
M (5,7)
Trw+ Ty < ——"2 0
[T 7‘_M(%,7)+1
M (5,7)
T+ Ty < ———7—~—,
| vl < M)+ 1
M(52,v)+1 1
M(e,y) T4 Toll’
T 1
M(s2,7) = | Tse+ THl’
1 -1

[T + T = M()

All the conditions of Theorem 2.3 hold and dy(>,7) = 1 |5, 7||. Hence the integral equation (7)

admits

a unique solution. O

3.2. Potential applications.

In dislocated quasi-ultrametric spaces, integral equations find their applications in fixed point

theory.

This includes various aspects and functions relevant to this area of study.

Existence and Uniqueness: Integral equations make it easy to determine whether
fixed points exist for mappings defined on dislocated quasi-ultrametric spaces. By for-
mulating the problem as an integral equation, one can often apply fixed-point theorems
to establish the existence of solutions under appropriate conditions.

Convergence Analysis: Integral equations let you study how iterative methods used
to get close to fixed points behave when they converge. Understanding the convergence
properties of such methods is crucial for developing efficient numerical algorithms.
Applications in Dynamic Systems: We can study dynamical systems controlled by
mappings defined in dislocated quasi-ultrametric spaces using integral equations. Fixed-
point results obtained through integral equations provide insights into such systems’
long-term behavior.

Studying integral equations in dislocated quasi-ultrametric spaces using fixed-point theory pro-
vides a new approach to analyzing complex mathematical problems. This method has practical
applications in various fields, such as mathematical analysis, functional analysis, and mathe-

matical physics.
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4. CONCLUSIONS

In our paper, we delve into the intriguing realm of dg-ultrametric spaces, a concept that merges
two fundamental notions in mathematics: dg-metric spaces and ultrametric spaces. This fusion
opens new avenues for exploring fixed-point theory, a central area in mathematical analysis with
broad applications across various disciplines. Firstly, we rigorously define dg-ultrametric spaces,
establishing the foundational framework for our subsequent discussions. Our new setting is a
mix of the rich theory of dg-metric spaces, which are generalized metric spaces by loosening
the triangle inequality, and ultrametric spaces, which are known for having a strong triangular
inequality.

Our paper makes a big contribution by showing fixed-point theorems in dg-ultrametric spaces
using generalized contractions as the main tool. These theorems build on previous work in both
dg-metric spaces and ultrametric spaces. They show how well our method works for bringing
together and expanding previous research. We also explain different contractive conditions that
are specific to dg-ultrametric spaces. Each one gives us a different view of fixed-point properties.
Making use of these conditions, we get a wide range of fixed-point results that show how flexible
and rich it is to study dg-ultrametric spaces.

In essence, our work not only establishes the theoretical underpinnings of dg-ultrametric
spaces but also demonstrates their practical utility in elucidating fixed-point phenomena. By
offering novel perspectives and tools for analysis, we contribute to the ongoing advancement of
fixed-point theory and its applications in diverse mathematical contexts.
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